Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 23(7): 1119-1128, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29523971

RESUMO

This study explores key features of bromine and iodine metabolism in the filamentous brown alga and genomics model Ectocarpus siliculosus. Both elements are accumulated in Ectocarpus, albeit at much lower concentration factors (2-3 orders of magnitude for iodine, and < 1 order of magnitude for bromine) than e.g. in the kelp Laminaria digitata. Iodide competitively reduces the accumulation of bromide. Both iodide and bromide are accumulated in the cell wall (apoplast) of Ectocarpus, with minor amounts of bromine also detectable in the cytosol. Ectocarpus emits a range of volatile halogenated compounds, the most prominent of which by far is methyl iodide. Interestingly, biosynthesis of this compound cannot be accounted for by vanadium haloperoxidase since the latter have not been found to catalyze direct halogenation of an unactivated methyl group or hydrocarbon so a methyl halide transferase-type production mechanism is proposed.


Assuntos
Bromo/metabolismo , Hidrocarbonetos Halogenados/metabolismo , Iodo/metabolismo , Phaeophyceae/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Bromo/química , Halogenação , Hidrocarbonetos Halogenados/química , Iodo/química , Phaeophyceae/química , Phaeophyceae/citologia , Compostos Orgânicos Voláteis/química
2.
J Inorg Biochem ; 177: 82-88, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28926758

RESUMO

Despite its paramount role in the functioning of coastal ecosystems, relatively little is known about halogen metabolism in giant kelp (Macrocystis pyrifera). This is an important shortcoming given the potential implications for marine and atmospheric chemical processes in the wide distribution range of Macrocystis. The work presented here constitutes the first in depth investigation of the uptake, efflux, and of the physiological function of iodide in this important kelp species. Iodide uptake and efflux rates were measured in adult sporophytes of Macrocystis under normal and stressed (exogenous hydrogen peroxide and an elicitor-triggered oxidative burst) conditions. Kelp tissue took up iodide according to Michaelis-Menten type kinetics when incubated in seawater enriched with various concentrations of iodide. Upon the addition of exogenous hydrogen peroxide, simulating oxidative stress, a marked efflux of iodide occurred. In situ generation of hydrogen peroxide was elicited in Macrocystis upon the addition of oligomeric degradation products of alginate as well as arachidonic acid and methyl jasmonate constituting a defensive oxidative burst that could be linked to iodine accumulation. H2O2 was detected at the single cell level using dichlorohydrofluorescein diacetate, a fluorogenic probe capable of detecting intracellular H2O2. When assayed for vanadium haloperoxidase activity, several bromoperoxidase isoforms were detected as well as a single iodoperoxidase. Altogether, the results of this study show that Macrocystis has an elaborate iodine metabolism, which is likely significant for impacting iodine speciation in seawater around kelp beds and for volatile halogen emissions into the coastal atmosphere.


Assuntos
Iodetos/metabolismo , Iodo/metabolismo , Kelp/metabolismo , Macrocystis/metabolismo , Acetatos/metabolismo , Ácido Araquidônico/metabolismo , Ciclopentanos/metabolismo , Peróxido de Hidrogênio/metabolismo , Iodeto Peroxidase/metabolismo , Iodo/análise , Isoenzimas/metabolismo , Estresse Oxidativo , Oxilipinas/metabolismo , Peroxidases/metabolismo
3.
Metallomics ; 8(5): 551, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27123807

RESUMO

Correction for 'Surface binding, localization and storage of iron in the giant kelp Macrocystis pyrifera' by Eric P. Miller et al., Metallomics, 2016, 8, 403-411.

4.
Metallomics ; 8(4): 403-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27009567

RESUMO

Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. Although the iron uptake and storage mechanisms of terrestrial/higher plants have been well-studied, the corresponding systems in marine algae have received far less attention. While the iron many marine algae take up from the environment, irrespective of its detailed internalization mechanism, arrives at the cell surface by diffusion, there is growing evidence for more "active" means of concentrating this element prior to uptake. It has been well established in both laboratory and environmentally derived samples, that a large amount of iron can be "non-specifically" adsorbed to the surface of marine algae. While this phenomenon is widely recognized and has prompted the development of experimental protocols to eliminate its contribution to iron uptake studies, its potential biological significance as a concentrated iron storage source for marine algae is only now being recognized. In this study, using an interdisciplinary array of techniques, we show that the giant kelp Macrocystis pyrifera also displays significant cell surface bound iron although less than that seen with the related brown alga Ectocarpus siliculosus. The iron on the surface is likely bound to carboxylate groups and once inside the iron is found to localize differently depending on cell type. Iron appears to be stored in an as yet undefined mineral phase.


Assuntos
Membrana Celular/metabolismo , Ferro/metabolismo , Macrocystis/metabolismo , 3,3'-Diaminobenzidina/metabolismo , Azóis/metabolismo , Fluorescência , Espaço Intracelular/metabolismo , Cinética , Espectroscopia de Mossbauer , Termodinâmica
5.
Metallomics ; 8(2): 161-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26679972

RESUMO

In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus.


Assuntos
Boro , Phaeophyceae , Boro/análise , Boro/metabolismo , Microscopia , Phaeophyceae/citologia , Phaeophyceae/metabolismo , Phaeophyceae/fisiologia
6.
J Exp Bot ; 65(2): 585-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24368501

RESUMO

Although the iron uptake and storage mechanisms of terrestrial/higher plants have been well studied, the corresponding systems in marine algae have received far less attention. Studies have shown that while some species of unicellular algae utilize unique mechanisms of iron uptake, many acquire iron through the same general mechanisms as higher plants. In contrast, the iron acquisition strategies of the multicellular macroalgae remain largely unknown. This is especially surprising since many of these organisms represent important ecological and evolutionary niches in the coastal marine environment. It has been well established in both laboratory and environmentally derived samples, that a large amount of iron can be 'non-specifically' adsorbed to the surface of marine algae. While this phenomenon is widely recognized and has prompted the development of experimental protocols to eliminate its contribution to iron uptake studies, its potential biological significance as a concentrated iron source for marine algae is only now being recognized. This study used an interdisciplinary array of techniques to explore the nature of the extensive and powerful iron binding on the surface of both laboratory and environmental samples of the marine brown alga Ectocarpus siliculosus and shows that some of this surface-bound iron is eventually internalized. It is proposed that the surface-binding properties of E. siliculosus allow it to function as a quasibiological metal ion 'buffer', allowing iron uptake under the widely varying external iron concentrations found in coastal marine environments.


Assuntos
Ferro/metabolismo , Phaeophyceae/metabolismo , Soluções Tampão , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ácido Edético/farmacologia , Compostos Ferrosos/farmacologia , Íons , Cinética , Phaeophyceae/citologia , Phaeophyceae/efeitos dos fármacos , Phaeophyceae/ultraestrutura , Espectrometria por Raios X , Espectroscopia de Mossbauer , Termodinâmica , Fatores de Tempo
7.
J Exp Bot ; 63(16): 5763-72, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22945940

RESUMO

Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood, with two basic strategies for iron uptake being distinguished: strategy I plants use a mechanism involving induction of Fe(III)-chelate reductase (ferrireductase) and Fe(II) transporter proteins, while strategy II plants utilize high-affinity, iron-specific, binding compounds called phytosiderophores. In contrast, little is known about the corresponding systems in marine, plant-like lineages, particularly those of multicellular algae (seaweeds). Herein the first study of the iron uptake and storage mechanisms in the brown alga Ectocarpus siliculosus is reported. Genomic data suggest that Ectocarpus may use a strategy I approach. Short-term radio-iron uptake studies verified that iron is taken up by Ectocarpus in a time- and concentration-dependent manner consistent with an active transport process. Upon long-term exposure to (57)Fe, two metabolites have been identified using a combination of Mössbauer and X-ray absorption spectroscopies. These include an iron-sulphur cluster accounting for ~26% of the total intracellular iron pool and a second component with spectra typical of a polymeric (Fe(3+)O(6)) system with parameters similar to the amorphous phosphorus-rich mineral core of bacterial and plant ferritins. This iron metabolite accounts for ~74% of the cellular iron pool and suggests that Ectocarpus contains a non-ferritin but mineral-based iron storage pool.


Assuntos
Ferro/metabolismo , Phaeophyceae/metabolismo , Absorciometria de Fóton , Genômica , Transporte de Íons , Phaeophyceae/química , Phaeophyceae/genética , Proteínas/genética , Proteínas/metabolismo
8.
Cancer Res ; 63(24): 8648-55, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14695176

RESUMO

Microcell-mediated transfer of normal chromosome 11 (chr 11) to a clonal derivative of the ovarian cancer cell line, OVCAR3, was performed and generated independent hybrids with a common set of phenotypes: inhibition of cell growth and of cellular migration in vitro; and inhibition of tumor growth in vivo. Differential display reverse transcriptase-PCR (RT-PCR), cDNA-representational difference analysis, and hybridization of cDNA high-density filter arrays identified altered mRNAs associated with these phenotypic alterations. Quantitative RT-PCR-based validation of each altered mRNA eliminated false positives to identify a reduced set of expression differences. Twelve products were confirmed as up-regulated and 4 as down-regulated upon introduction of chr 11. Strikingly, 4 of the 12 up-regulated genes were located on chr 11. Expression analysis of selected products by quantitative RT-PCR in a series of 18 human primary ovarian tumors revealed several associations with clinicopathological features. Importantly, low expression of two products, the lysosomal protease CTSD and the lens crystallin CRYAB, was significantly associated with adverse patient survival. Immunohistochemical analysis of CTSD in a larger independent panel of 58 primary ovarian tumors confirmed that low CTSD was associated with poor survival. Furthermore, low CTSD was significantly associated with serous histology and advanced tumor stage. The combined approach of microcell-mediated chromosome transfer and expression difference analysis has identified several altered mRNAs in a model of chr 11-mediated ovarian tumor suppression. The detailed contextual characterization of these genes will determine the extent of their involvement in neoplastic development.


Assuntos
Cromossomos Humanos Par 11/genética , Genes Supressores de Tumor , Neoplasias Ovarianas/genética , Divisão Celular/genética , Linhagem Celular Tumoral , Feminino , Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Neoplasias Ovarianas/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Nat Genet ; 34(3): 337-43, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12819783

RESUMO

Epithelial ovarian cancer (EOC), the leading cause of death from gynecological malignancy, is a poorly understood disease. The typically advanced presentation of EOC with loco-regional dissemination in the peritoneal cavity and the rare incidence of visceral metastases are hallmarks of the disease. These features relate to the biology of the disease, which is a principal determinant of outcome. EOC arises as a result of genetic alterations sustained by the ovarian surface epithelium (OSE; ref. 3). The causes of these changes are unknown but are manifest by activation of oncogenes and inactivation of tumor-suppressor genes (TSGs). Our analysis of loss of heterozygosity at 11q25 identified OPCML (also called OBCAM), a member of the IgLON family of immunoglobulin (Ig) domain-containing glycosylphosphatidylinositol (GPI)-anchored cell adhesion molecules, as a candidate TSG in EOC. OPCML is frequently somatically inactivated in EOC by allele loss and by CpG island methylation. OPCML has functional characteristics consistent with TSG properties both in vitro and in vivo. A somatic missense mutation from an individual with EOC shows clear evidence of loss of function. These findings suggest that OPCML is an excellent candidate for the 11q25 ovarian cancer TSG. This is the first description to our knowledge of the involvement of the IgLON family in cancer.


Assuntos
Proteínas de Transporte/genética , Moléculas de Adesão Celular/genética , Cromossomos Humanos Par 11/genética , Genes Supressores de Tumor/fisiologia , Perda de Heterozigosidade , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Animais , Azacitidina/farmacologia , Neoplasias da Mama/genética , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/metabolismo , Ilhas de CpG , DNA/genética , DNA/metabolismo , Metilação de DNA , Inibidores Enzimáticos/farmacologia , Feminino , Proteínas Ligadas por GPI , Humanos , Camundongos , Camundongos Nus , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Células Tumorais Cultivadas/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...